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Abstract
First-principles calculations were performed for the superconductivity of
vanadium and selenium under high pressures. The superconducting transition
temperature Tc of bcc vanadium, obtained as a function of pressure, shows
a considerable increase, at first linearly, with pressure, and then the rate of
increase of Tc is abated around 80 GPa. The calculated pressure dependence
of Tc shows qualitatively the same behaviour as the experimental result. This
characteristic behaviour of Tc as a function of pressure is attributed to a
remarkable phonon anomaly, i.e. frequency softening of the transverse mode
around a quarter of the �–H line with increasing pressure. The superconducting
transition temperature Tc, calculated for two high-pressure phases of solid
selenium, bcc and β-Po, also shows a characteristic pressure dependence. In
bcc Se, Tc increases considerably with decreasing pressure and its maximum
exceeds 10 K. In β-Po Se, Tc is less pressure dependent and much lower than
that of bcc Se. There is a large jump in Tc at the transition pressure from bcc to
β-Po with decreasing pressure. The remarkable increase of Tc with decreasing
pressure in bcc Se is attributed also to a phonon anomaly, i.e. a frequency
softening of the transverse mode in the middle of the �–N line with decreasing
pressure.

1. Introduction

The superconductivity of the transition metal vanadium (V) has been investigated in several
works [1–5], and quite characteristic pressure dependence of the transition temperature Tc has
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been observed. According to the experimental results obtained by Ishizuka et al [4], the value
of Tc is 5.3 K at atmospheric pressure; it increases linearly with pressure, and it reaches 17.2 K
at 120 GPa (the rate of increase is 0.096 K GPa−1). With further increasing pressure, from 120
to 150 GPa, Tc stops increasing, and it has a constant value [5]. The crystal structure of V is
reported to be bcc from ambient pressure up to 150 GPa [6].

The superconducting transition temperature of tellurium (Te), which is one of the group
VIb elements, also shows interesting pressure dependence. The crystal structure of Te
transforms from β-Po to bcc phase at 27 GPa [7], and a jump in Tc from 2.5 to 7.4 K has
been observed at the structural phase transition [8]. Theoretically, Mauri et al suggest that the
jump in Tc is related to the phonon softening in the bcc phase, namely with decreasing pressure
the phonon anomaly enhances the electron–phonon coupling [9].

Selenium (Se), which is another element of group VIb, also undergoes a structural phase
transition from β-Po to bcc phase at 150 GPa [8], but there is neither experimental observation
nor ab initio calculation for the pressure dependence of Tc.

In this study we carried out first-principles electronic structure calculations for V and Se
by using the full-potential linear muffin-tin orbital (FPLMTO) method [10] in order to estimate
the equation of state of V and to discuss the pressure-induced phase transition from β-Po to bcc
in Se. Then, by calculating the phonon frequencies and electron–phonon coupling constants of
both V and Se with use of the linear-response FPLMTO (LR-FPLMTO) method [11, 12] we
evaluated the superconducting transition temperature of V and Se as a function of pressure. A
part of the results for V has appeared in [13], and the detailed results for Se have been given
in [14].

2. Calculational procedure

The calculations of electronic states for V and Se were done according to the following
procedure with the use of the FPLMTO program [10]. For the exchange–correlation functional
we adopted the formula proposed by Ceperley and Alder [15] for V and by Gunnarsson and
Lundqvist [16], and the GGA correction proposed by Perdew et al [17] for Se was taken into
account. Inside the muffin-tin (MT) spheres, scalar-relativistic calculations were performed for
valence electrons, and the core states were recalculated at each self-consistent iteration with
relativistic effects. For V the MT radius was taken to be a constant ratio of MT radius to lattice
parameter, 0.43. For Se, on the other hand, the MT radius was taken to be constant, 1.07 Å. The
k-space integration was performed by using the improved tetrahedron method [18] with the use
of a (16, 16, 16) [(12, 12, 12)] grid of sampling k-points for V [Se]. For V we used the 3κ–
spd–LMTO basis set (21 orbitals): κ2 = −0.1,−1.0 Ryd for 4s, 4p, 3d and κ2 = −2.0 Ryd for
3p, respectively. For Se we used the 3κ–spd–LMTO basis set (27 orbitals): κ2 = −0.1,−1.0
and −2.0 Ryd. In the interstitial region the basis functions were expanded in plane waves up
to the cutoff corresponding approximately to 86, 140 and 224 [200, 350 and 650] plane waves
per s, p, and d orbital, respectively, for V [Se]. The charge densities and the potentials were
expanded inside the MT spheres by spherical harmonics up to �max = 6 for both V and Se and
in the interstitial region by plane waves with the cutoff corresponding to the (26, 26, 26) [(16,
16, 16)] fast-Fourier-transform (FFT) grid in the unit cell of direct space for V [Se]. The final
convergence was within 10−6 Ryd.

Our calculations of phonon dispersion for V and Se were performed in the framework of
the LR-FPLMTO method [11, 12]. We found the dynamical matrix as a function of wavevector
for a set of irreducible q-points on an (8, 8, 8) reciprocal lattice grid for bcc V and Se and (6,
6, 6) reciprocal lattice grid for β-Po Se. The k-space integration needed for constructing the
induced charge density and the dynamical matrix was performed over the (16, 16, 16) grid for
bcc V and Se and (12, 12, 12) grid for β-Po Se, which was twice as dense as the grid of the
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phonon wavevectors q. The integration was also performed by using the improved tetrahedron
method. However, the integration weights for the k-points on the (16, 16, 16) or (12, 12, 12)
grid were found to take precisely into account the effects arising from the Fermi surface and
the energy bands. This was done with the help of the band energies generated by the original
FPLMTO method at the (32, 32, 32) grid for bcc V and Se and the (24, 24, 24) grid for β-Po
Se. The procedure allowed us to obtain more convergent results with respect to the number of
k points.

For calculation of the electron–phonon coupling the corresponding k-space integrations
are more sensitive than the dynamical matrices to the number of sampling k-points. The
calculation was performed with the help of the (32, 32, 32) grid for bcc V and Se and the
(24, 24, 24) grid for β-Po Se by means of the tetrahedron method.

The superconducting transition temperature Tc was calculated by using the Allen and
Dynes formula [19], which was derived on the basis of the strong coupling theory of the phonon
mechanism [20]. Instead of describing the details of the strong coupling theory, here we give
only the necessary equations to calculate Tc.

For the electron–phonon spectral distribution functions α2 F(ω), we employed the
expression [21] in terms of the phonon linewidths γqν

α2 F(ω) = 1

2π N(εF)

∑

qν

γqν

ωqν

δ(ω − ωqν), (1)

where N(εF) is the electronic density of states per atom and per spin at the Fermi level. When
the energy bands around the Fermi level are linear in the range of phonon energies, the linewidth
is given by the Fermi ‘golden rule’ and is written as follows:

γqν = 2πωqν

∑

k j j ′
|gqν

k+q j ′,k j |2δ(εk j − εF)δ(εk+q j ′ − εF) (2)

where gqν

k+q j ′,k j is the electron–phonon matrix element, and is conventionally written in the
form

gqν

k+q j ′,k j = 〈k + q j ′|δqνVeff|k j〉, (3)

where k j denotes the one-electron basis k j and δqνVeff is the change in the effective potential
induced from a particular qν phonon mode. Precisely speaking, the electron–phonon matrix
element must be corrected for the incompleteness of the basis functions, but we do not discuss
this here. The expression of Tc derived by Allen and Dynes [19] by modifying the McMillan
formula [22] is given as

Tc = ωlog

1.2
exp

(
− 1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

)
, (4)

where

λ = 2
∫ ∞

0
dω

α2 F(ω)

ω
, (5)

ωlog = exp
1

λ

∫ ∞

0

dω

ω
α2 F(ω) log ω. (6)

Usually λ is called the dimensionless electron–phonon coupling constant, ωlog the logarithmic-
averaged phonon frequency and μ∗ the effective screened Coulomb repulsion constant, whose
value is usually taken to be between 0.1 and 0.15.

In the case of monatomic metals, λ can also be expressed in the following form:

λ = N(εF)〈I 2〉
M〈ω2〉 = η

M〈ω2〉 , (7)
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Figure 1. The pressure dependence of the atomic volume of bcc V. The solid line denotes the results
of the present calculations and the filled squares indicate the experimental results [7].

where M is the mass of the atoms and 〈ω2〉 denotes the average of the squared phonon
frequencies, which is given as

〈ω2〉 =
∫

ω2 α2 F(ω)

ω
dω

∫
α2 F(ω)

ω
dω

. (8)

Further, 〈I 2〉 represents the Fermi surface average of squared electron–phonon coupling
interaction, which is defined by

〈I 2〉 =
∑

qν

∑
k j j ′ |gqν

k+q j ′,k j |2δ(εk j − εF)δ(εk+q j ′ − εF)∑
qν

∑
k j j ′ δ(εk j − εF)δ(εk+q j ′ − εF)

(9)

and η = N(εF)〈I 2〉 is called the Hopfield parameter.

3. Results for vanadium

First we calculated the electronic band structure and the total energy of bcc V as a function of
volume. Then, we evaluated the pressure as a function of volume by fitting the calculated total
energies to the Murnaghan equation of state [23]:

E(V ) = B0V

B ′
0

[
1

B ′
0 − 1

(
V0

V

)B ′
0

+ 1

]
+ constant,

where B0 and B ′
0 is the isothermal bulk modulus at zero pressure and its derivative, respectively.

The pressure is determined from

P = B0

B ′
0

[(
V

V0

)−B ′
0

− 1

]
.

Figure 1 shows the pressure dependence of the atomic volume. The solid line denotes the
results of the present calculations and the filled squares indicate the experimental results [6]. We
obtained the bulk modulus and its pressure derivative as B0 = 194.6 GPa and B ′

0 = 3.0, which
are in reasonable agreement with the experimental values [6] (B0 = 188.0 GPa and B ′

0 = 2.4),
and the pressure dependence of volume is in excellent agreement with the experimental results.
The density of states (DOS) at the Fermi level [N(εF)] decreases monotonically from 26.4
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Figure 2. The pressure dependence of N(εF) of bcc V.
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Figure 3. The phonon dispersion of bcc V along the �–H line at 120 and 137 GPa. The dashed and
solid lines denote the longitudinal and transverse mode, respectively.

(state/Ryd/atom) at 8.3 GPa to 16.6 (state/Ryd/atom) at 120 GPa (see figure 2). This decrease
of the DOS results in the decrease of the dimensionless electron–phonon coupling constant λ

defined by equation (7).
To see the pressure dependence of the phonon frequency, we calculated phonon dispersion

curves along high-symmetry lines for several volumes (pressures). As the pressure increases,
the overall tendency of increase of phonon frequency is seen. At the same time we found a
remarkable phonon anomaly, i.e. frequencies of the transverse mode around a quarter of the
�–H line show softening with increasing pressure and become imaginary at pressures higher
than ∼130 GPa. Figure 3 shows the phonon frequencies along the �–H line obtained for 120
and 137 GPa. As is seen from the figures, the phonon frequencies around a quarter of the �–H
line show complete softening at 120–137 GPa, indicating a possibility of a structural transition
from bcc to another phase. As is shown later, a similar anomaly was obtained for the phonon
frequencies of the transverse mode around the middle of the �–N line in bcc Se with decreasing
pressure.

In order to clarify the origin of the characteristic pressure dependence of the observed Tc

we calculated the electron–phonon interaction of bcc V. Knowledge of the electron–phonon
interaction enables us to calculate Tc. Actual calculations of Tc were performed by using the
Allen–Dynes formula given by equation (4). With respect to the value of μ∗, the conventional
value is usually taken to be ∼0.13. Vaitheeswaran et al [24], however, estimated μ∗ as 0.248
by using an empirical relation proposed by Bennemann and Garland [25]. Savrasov [13] solved
the Eliashberg equation and found the value of μ∗ to be 0.30. Since it is difficult to estimate
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Figure 4. The electron–phonon coupling constant λ and the logarithmic-averaged phonon frequency
〈ω〉log as a function of pressure.
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Figure 5. The pressure dependence of Tc. The filled circles represent our work and the squares
and triangles denote the experimental results obtained by Ishizuka et al [4, 5] and by Akahama et al
[26], respectively.

the value of μ∗ in an ab initio manner, as a first step in estimating the pressure dependence of
Tc we adopted μ∗ = 0.25 for the whole range of pressure, which well reproduces the value of
Tc at 8 GPa.

Figure 4 shows the results of calculations for the pressure dependences of λ and 〈ω〉log.
As is seen from the figure, the value of λ increases gradually as the pressure is increased
from ambient pressure. With further increasing pressure it increases rapidly at pressures above
∼80 GPa, reflecting a remarkable phonon softening around a quarter of the �–H line. The
value of 〈ω〉log also increases at first with increasing pressure. Above 80 GPa, however, the
phonon softening causes an abrupt and significant decrease of 〈ω〉log.

These pressure dependences of λ and 〈ω〉log give rise to a characteristic pressure
dependence for Tc. The values of Tc evaluated as a function of pressure from equation (4) are
shown in figure 5, together with the experimental data [4, 5, 26]. In the lower pressure region
the value of Tc increases, at first linearly with pressure, since both λ and 〈ω〉log are increased
by applying pressure. At pressures higher than ∼80 GPa, on the other hand, the increase
of λ and the decrease of 〈ω〉log cancel out, and as a result Tc becomes rather independent of
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pressure. These theoretical results for the pressure dependence of Tc agree fairly well with the
observations. As to the quantitative difference between the theoretical and experimental results
in the higher pressure region, we consider that it may be caused by our overestimation of the
phonon softening around a quarter of the �–H line. Finally, we emphasize that the results of
our lattice dynamical calculations strongly suggest the possibility of a structural transition from
bcc to another phase at higher pressures. Experimental measurements on the crystal structure
of V at pressures higher than 150 GPa are desired.

Recently, Louis and Iyakutti [27] performed theoretical calculations of the electronic band
structure and superconductivity of V under pressures. The band structures of bcc, sc, fcc and
sh phases were computed by means of the tight-binding linear muffin-tin orbital method, and
they predicted that a structural phase transition from bcc to sc would occur at 139.3 GPa.
The superconducting transition temperature Tc of bcc V under pressures was calculated up to
945 GPa with the use of the theory of Gaspari and Gyoffy for the dimensionless electron–
phonon coupling constant λ as well as the Debye model for the lattice dynamics. The value of
Tc calculated increases monotonically with increasing pressure and reaches the highest value,
20.99 K, at 139.3 GPa. On further increasing the pressure it goes on decreasing, and reaches
5.44 K at 945 GPa. The value of Tc evaluated for sc V is much lower than that of bcc V, i.e.,
1.72 K at 238 GPa and 0.056 K at 945 GPa (the value of Tc at 139.3 GPa is not given in [27]).

Experimentally, on the other hand, as mentioned in section 1, the crystal structure of V
is reported to be bcc from ambient pressure up to 150 GPa [6], and the value of Tc is almost
constant from 120 to 150 GPa [5]. Therefore, in order to obtain a better understanding of
the structural and superconducting properties of V under high pressures, refinements of the
theoretical calculations as well as experimental measurements at pressures higher than 150 GPa
are desired.

4. Results for selenium

First we calculated the total energies of β-Po and bcc Se as a function of volume in order to
investigate the pressure-induced structural transition, bcc → β-Po. The β-Po type structure
is rhombohedral, and it can be described as a simple cubic lattice deformed along the [111]
direction keeping the edge length unchanged. By changing the ratio c/a of the rhombohedral
lattice we obtain the bcc structure when c/a = √

6/4. For the β-Po structure we optimized
c/a at each volume, namely, we calculated the total energy of β-Po Se as a function of c/a
with the atomic volume VA being kept constant. The pressure of each structure was evaluated
as a function of volume by fitting the calculated total energies by the Murnaghan equation of
state [23].

In order to estimate the transition pressure from β-Po to bcc we calculated the Gibbs
free energy (or enthalpy) as a function of pressure. The Gibbs free energy is defined by
G(P) ≡ Etot(P) + PV (P) and the transition pressure between the two phases is obtained
from the relation Gβ(P) = Gb(P), where Gβ and Gb are the Gibbs free energies of the β-
Po and the bcc structures, respectively. Figure 6 shows the Gibbs free energies of bcc and
β-Po Se (the origin of energy is taken to be the Gibbs free energy of bcc Se). From this plot
the transition pressure Pc from β-Po to bcc was estimated as 120 GPa. This value is higher
than other calculated transition pressures, 95 GPa (FLAPW method without GGA) [28] and
110 GPa (pseudo-potential method without GGA) [29], but still lower than the experimental
value of 150 GPa [30]. The origin of this discrepancy between theory and experiment may be
ascribed to the LDA with GGA itself and/or the numerical accuracy of the total energy.

Besides the pressure dependence of the atomic volume VA of both the structures, for β-
Po Se we also calculated the lattice constants a and c, and the bond lengths r1 and r2, which
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Figure 7. The phonon dispersion curve along the high-symmetry line (�–N) of bcc Se calculated
at 165.6 and 128.6 GPa.

are defined as the nearest neighbour (nn) and next nn (nnn) atomic distances, respectively.
We note here that the volume variation as a function of pressure below 120 GPa (β-Po) and
above 150 GPa (bcc) shows good agreement with the observations [30]. It is also noted that
the obtained pressure dependence of a, c and the bond lengths of the β-Po phase agree well
with the experimental results [30]. Furthermore, the volume reduction at the transition from
the β-Po to the bcc phase is estimated to be 0.06 Å

3
, which is in good agreement with the

experimental volume (about 0.08 Å
3
) [30].

As for the lattice dynamics, we first calculated the phonon dispersion curve along the high-
symmetry line (�–N) for bcc Se at different four volumes (pressures), 10.37 Å

3
(214.2 GPa),

11.11 Å
3

(165.6 GPa), 11.85 Å
3

(128.6 GPa), and 12.59 Å
3

(103.4 GPa). The results for
165.6 and 128.6 GPa are shown in figure 7. As the pressure decreases, the overall tendency
of decrease of phonon frequency is seen. In particular, the frequency softening is remarkable
for one of the transverse modes (shown by the solid curve), and this mode exhibits a notable
phonon anomaly, i.e., a dip in the middle of the line. The same phonon anomaly is obtained in
S [31]. This softening of the transverse mode does not directly cause the bcc → β-Po transition
with decreasing pressure, because both of the β-Po and bcc phases have one atom per unit cell.
However, Zakharov and Cohen [31] have pointed out that it plays an important role in changing
the coordination number from eight to six during the bcc → β-Po transition.

Mauri et al [9] performed an ab initio linear-response calculation for the lattice dynamics
of bcc Te under pressures. They reported the same anomaly for the transverse mode along
the �–N line and found that with decreasing pressure the phonon frequencies in the middle
of the �–N line become imaginary in a pressure region where the β-Po structure is stable. In
our calculation, complete softening of the transverse mode was not observed even at 100 GPa,
where the β-Po structure is stable. Complete softening may occur at even lower pressures.

8
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Table 1. The values of N(εF), η, ωlog, 〈ω2〉, λ and Tc calculated for bcc Se at 165.6 and 128.6 GPa.
The two values for Tc correspond to two different values of μ∗ (0.10 and 0.12). The units of N(εF)

and η are state/Ryd/atom/spin and Ryd Å
−2

, respectively.

P (GPa) N(εF) η ωlog (K) 〈ω2〉 (K2) λ Tc (K)

128.6 2.73 0.018 224.73 291.952 0.83 11.29, 9.90
165.6 2.55 0.019 264.62 335.112 0.66 8.03, 6.64

By using the Allen–Dynes formula, we estimated the superconducting transition
temperature Tc of bcc Se. In table 1 we give the values of Tc together with those of the density of
states N(εF), the Hopfield parameter η, the logarithmic-averaged frequency ωlog, the average of
the squared phonon frequencies 〈ω2〉, and the electron–phonon coupling constant λ, calculated
at 165.6 and 128.6 GPa. As for the value of μ∗, we tentatively adopted two typical values,
μ∗ = 0.10 and 0.12. With decreasing pressure, the value of ωlog decreases, while the value
of λ increases, but the rate of change of λ exceeds that of ωlog. As a result, the value of Tc

increases considerably with decreasing pressure. Since λ can be expressed by λ = N(εF)〈I 2〉
M〈ω2〉 ,

the frequency softening (decrease of 〈ω2〉) is considered to contribute to the increase of λ with
decreasing pressure.

In order to obtain a more physical insight into the characteristic pressure dependence of Tc,
we calculated the mode and wavevector dependences of the phonon linewidths γqν along the
symmetry lines. The results obtained for 165.6 and 128.6 GPa are shown in figure 8. The figure
shows that γqν is almost independent of pressure, except for the longitudinal mode along the
�–H line and one of the transverse modes along the �–N line. With decreasing pressure, γqν of
the longitudinal mode along the �–H line decreases whereas that of the transverse mode along
the �–N line increases considerably. Generally speaking, a large phonon linewidth increases
the dimensionless electron–phonon coupling λ. Therefore, it is expected that the transverse
mode along the �–N line plays an important role in giving rise to the characteristic pressure
dependence of Tc.

To clarify the role of the transverse mode along the �–N line in more detail, we calculated
the quantity α2(ω), defined by

α2(ω) = α2 F(ω)

D(ω)
, (10)

9
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where α2 F(ω) is the spectral function and D(ω) denotes the phonon density of states. We
consider that by inspecting the frequency dependence of α2(ω) we can discern which phonons
make dominant contributions to the dimensionless electron–phonon coupling λ. Figure 9
shows the calculated α2(ω) as a function of frequency for three pressures. The peak around
2 THz originates from transverse phonons along the �–N line and the peak around 7–10 THz
from longitudinal phonons along the �–H line. As is seen from the figure, both peaks move
towards the lower frequency side with decreasing pressure. It should be noted, however, that
the magnitude of α2(ω) around 2 THz increases remarkably with decreasing pressure, whereas
the magnitude of α2(ω) around 7–10 THz is less dependent on pressure. Therefore, we can say
again that transverse phonons in the middle of the �–N line make a dominant contribution to λ.

Combining all of the above results, we conclude that the origin of the remarkable increase
of Tc of bcc Se with decreasing pressure is mainly attributed to the phonon anomaly (the
remarkable frequency softening) in the middle of the �–N line.

To see the pressure dependence of Tc in β-Po Se, we calculated Tc at pressures 103.1
and 118.2 GPa with the use of the lattice constants determined experimentally. The calculated
values of Tc are given in table 2, together with those of N(εF), η, ωlog, 〈ω2〉 and λ.
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Table 2. The values of N(εF), η, ωlog, 〈ω2〉, λ and Tc of β-Po Se calculated for 103.1 and
118.2 GPa. The two values for Tc correspond to two different values of μ∗ (0.10 and 0.12). The

units of N(εF) and η are state/Ryd/atom/spin and Ryd Å
−2

, respectively.

P (GPa) N(εF) η ωlog (K) 〈ω2〉 (K2) λ Tc (K)

103.1 2.45 0.015 250.11 311.712 0.58 5.14, 4.04
118.2 2.43 0.016 255.88 324.582 0.57 5.01, 3.91

Figure 10 shows the values of Tc calculated for β-Po and bcc Se as a function of pressure.
As is seen from the figure, the superconducting transition temperature Tc is almost pressure
independent in the β-Po phase, and there is a large jump in Tc at the transition from β-Po to bcc.
Almost the same results have been obtained by Rudin et al [32] for the pressure dependence
of Tc of β-Po and bcc Se. Recently, high-pressure measurements have been done for Se up to
180 GPa, and superconductivity has been observed at 150–170 GPa in the bcc phase [33]. The
observed values of Tc are very close to our calculated results.
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